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Abstract for _ _ [0,1] for all i.

Recently,a necessary and sufficientconditionto de-

termine the robust stabilityof a multilinearinterval

controlsystem has been reported in [i,2]as an exten-

sion of the weN-known Box theorem [3]which deals

with the linearaffinecase. This paper introducesa

simplebut computationally efficientalgorithm,based

on the above result,to check the robust stabilityof

such systems. The method isalso extended to find

the parametric stabilitymargin ofsuch a system.

1. ROBUST STABILITY

Let p := [PIi_ "'" I_] a vector of realparameters

lyinginthe intervaluncertaintyset

•n:={plp; <_<p,+, i=I,2,...,I}. (1)

Consider the polynomial

6(s,p) := 6o(p)+61(p)a+62(p)82+ ...+5,,(p)8"(2)

wherein the coefficients6i(p) are affinemultilinear

functionsof p. Wc shallreferto thistype of polyno-

mial as a multilinearintervalpolynomial. Itiseasy

to show that any multilinearintervalpolynomial can

be rewrittenas

6(s) := _-_ Q_(,) fl P,j(,) (3)
i=1 j=l

whereP,,(_)areintervalandq,(_) arefixedpoly-
nomials.The necessary and sufficient condition for

robust stability of the family 6(s) under the assump-

tion that P_j (s) are independent is given below. Let

/Cp_j(s) be the set of Kharitonov vertex polynomi-
als [4] associated with the interval polynomial Po(s)

and Sp, j ( s, Aj) the set of Kharitonov segment poly-
nomials associated with interval polynomial/_j is).

Theorem 1. [1,2] The multilinear family 6(s) i8

Hurwitz stable if a_d oaIll if the set of maaifold8 Mi

for i = 1, 2,..., m are Hurwitz stable _#here

S I = _ Oi(S)fl_.Pij(S) + Q|(S) fl_pij(S,A,)

i=l,i#! j=l j=l

(4)

Now letus definethe new parameter vector

,X := [;_1 A2 "'" _j], (5)

then each manifold in Mz can be written as the poly-

nomial set

6(s,Z) := _o(__) + 6_(Z)s +..., A, E [0, 1] (0)

where the coefficients 6i (_A)are multilinear functions

of 2k. Therefore, the problem of checking robust sta-

bility of a multilinear interval control system is re-

duced to checking the stability of the set of multilin-

ear polynomialsshown ineq. (0),as2kranges overthe

positiveunit hypercube in the firstquadrant.

Let us definethe set

A := {6(s,A) ]A, e [0,I]}. (Z)

Let V denote the verticesofthe 2kset,

v :=(__I_ = 0 or ),_= i,forall_} (8)

and A V := {6(s,__A) [_.AE V} (9)

denotes the set of vertex polynomials.

Note that A is a continuum of polynomials whereas

A v is a discrete set of polynomials and

A V C A. (I0)

Fixing s = s*,we letA(s*) denote the set of points

6(s*,_A)in the complex plane obtained by lettingA

range over [0, 1]:

A(,') := {6(,',Z)IZ e [o,1]}. (11)

Likewise wc have the discrete set of points in the com-

plex plane

AV(S') := {6(s*,A) ]A E V}. (12)

We now statethe well known Mapping Theorem [G].
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Theorem 2. (Mapping Theorem [6]) Under the

assumption that 6_(__) are affine multilinear f_nctions

o/h
co A(8*) = co AV(S* ) (13)

for each s* E¢ where co (.) indicates the conrez hull

of a set ()

This theorem shows that the image set of the mul-

tilinearly parametrized interval family, evaluated at

any point s* is contained in the convex hull of the
verticesevaluated at the same point. Although the

convex hullofthe verticesoverbounds thissetwe can

improve the accuracy ofthe approximation arbitrarily

by introducingadditionalvertices.This isillustrated

in Figures 1 to 4. The image set A(8*) iscontained

in the convex hullofR(s*) = co AV(S* ) asshown in

Figures I and 2. As shown in the subsequent figures

(Figures3,4) thisapproximation can be improved by

decomposing _ hypercube as a union ofsmallerboxes

and thereby introducingadditionalverticesas shown

in FiguresA.I and A.2.
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From thistheorem, we can easilyestablishthe follow-

ing corollary.

Corollary 1. The multilinear polynomial set A(s)

is Hurwitz stable if the convez hull of AV(S ) is Hur-
witz stable. If the dependence of the coe.O_cients _i(P)

on p is linear the stability of A(s) is equivalent to

that of the conrez hull of AV(S ).

If we define the set of convex combinations of the

vertex polynomials in Av(s ) by

Sis ):: {/_j6,(s)+ (1-/_#)6j(s) I_; e [0,1] and

6,(s), 6j.(s) 6 AV}, (14)

the stabilityof co AV(S )isequivalenttothe stability

of E(s). Since the set E(s) consistsoflinesegments

joiningevery pair of verticesin Avis ),itsstability

can be easilyverifiedby the Segment Lemma [7].The

segment Icmma basicallydetermines ifthe phase dif-

ferenceofa pair ofstablevertexpolynomials reaches

180 degrees at some w. If the phase difference does
not reach 180 ° for any w, the line segment joining

the two vertices is Hurwitz stable. This condition is

called the Phase Condition.

Using the above concepts we can easilyprove the fol-

lowing. Let A(jw) denote the complex plane image

of the set A(s) evaluatedat s = jw.

Theorem 3. The set of multilinear polynomials

,'.(s) is Zu,'_iU stab_ if i) for some _ e [0, oo),

0 ¢ A(j_) and ii) the set of all cor_spondi_gline
segments E(s) is Hurwitz stable.

This theorem along with the previouslygiven proce-

dure for approximating the image setcan be used to

developan efficientcomputational technique tocheck

robust stability.We can also extend thisresultto

the computation of the parametric stabilitymargin

of the multilinearintervalcontrolsystems. This is

done next.

2. PARAMETRIC STABILITY MARGIN

Consider a Hurwitz polynomial of the form

- fi6(s)= P,j(,) (15)

i=1 j=l

where Q, (s) are fixed and

a;(s) :=poj+ p js+ p, ,s2+....

Let us assume that coefficients_j for k = 0,1,2,...
are subjecttovariations.Ifwe assume the variations

incoefficientsare bounded as

_,_ E [/_0o - u'_./" _io + w_e], e _> 0 (17)

for a fixed value of the weights w O. with _J'o being the
nominal values of the parameters, then the paramet-

ric stability margin is defined as the maximum value

e* so that the multilinear polynomial 6(s) remains

Hurwits stable for all e E [0,e*).

Let us recall the manifolds shown in eq. (4). From

Theorem 1, the parametric stability margin of the

polynomial in eq. (15) is equivalently defined as

min {_ ] max{e t M_ E 7_,V),, E [0, 1]},

lem__,kE42"}. (18)

Note that each manifold in Mi has the form of

• . . Ki_, t's_QI(s)K'e_,',(s)K'P_,(s) "" e,,_ J +""

il-ll il- iII il-lr 8
+QI_I(,)Kp,__,(s)Kp,_,,(s)... Kp,_,.( )

+Q, Cs)SI_:, (,,)q)_:,(s, A2) . . . _.p,., ,

÷QI+I(S)K_+,:,(s)K_+,:,(s)... i,+,.Kpt+,,.(s) +""



where K_ (a) is the k th Kharitonov polynomial and

sklj _thp,_(s, _) is the segment polynomial associated
with an interval polynomial P_j (8), respectively.

Using the sufficient condition developed in Theo-

rem 3, we can develop the following computational

procedure.For some ?, if all the corresponding line

segments in E(a) are Hurwitz stable for all e E [0, _),
then the actual parametric stability margin e* is al-

ways greater than or equal to _. However, if we in-

troduce additional vertex points the approximation

of the image set by the convex hull of the vertices im-

proves and so the difference e* - £ becomes smaller.

This permits us to compute the parametric stability

margin with arbitrary accuracy depending upon how
much we want to refine the approximation and how

much computational burden may be taken. From the

above considerations,a bisectionalgorithm isdevel-

oped as follows:

Bisection Method: •

For each fixed e

Find all manifolds for

(AI,...,A,) e {(0,...,0),.,(1,...,1)}

IF allE(8) satisfyphase condition
THEN forward bisection

ELSE backward bisection

ENDIF

BisectionMethod stopswhen the sectionpiece

issmall enough.

3. NUMERICAL EXAMPLES

Ezample 1. Consider the feedback system shown in

Figure B.

Figure B. Feedback System.

P(_) := d(.---_'-d2.2+ dl. + do
.-- n_.(s) a2 + 2s + 1

e(s).- d_(,---_:=,_+2,3+2,_+,

with itsplant coefficientvariationsbeing bounded by

nz • [n_-,nl+] with the nominal value n ° = .15

no • [n_, no+] with the nominal value n_ = .95

do • Ida,d+] with the nominal value_ = .95

die

doe

and

[<,_]
[_,do+]
[n_,n,+]
[no,no+]
[_-,#¢]
[d_ ,d +]

[_,#¢]

with the nominal value _ = 1.9

with the nominal value d_ = 2.0

= [,_- _o_,._ + _0_]
= [_ - _._, _ + _._._]
= [_ - _,.,_, + _,.]
= [_ - _0.,_ + _.o.]

Then the characteristic polynomial is given by

n := {d(,)_(,) + n(,),,_.(,)}

which shows that the parameters are enteringintoits

coefficientlinearly.As we stated in Corollary 1,the

phase condition becomes necessary and sufficientin

thiscase. The setsof Kharitonov polynomials asso-

ciatedwith n(a, e) and d(8, e) are defined as follows:

{ K_C.,d=_ +_r., K_(.,_):._ +_.K_(s,e) no +n_',, K_(a,e) n+o + n;,

K_(s,e) +d+s+d+, 2

K,_(s,e) d_ + +d_s 2.

Thus we need to check the phase condition of the

followingsetof vertexpairs:E := Ez U E_ where

Ez := {(K_(s,e)_(a) + K_(s,e)n_.(s),

K_(#,e)&(s) + K_(s,e)n_.(,))}

E_ := {(K_(s,e)&.(s) _(,.dn_(,),+

K_ (s, e)d_.(a) + K_(a,e)n_.(a))}

for i=1,2,3,4 and

(i, k) • {(1, 2), (1, 3), (2, 3), (3, 4)}.

Using a bisection method on e, we have the paramet-

ric stability margin:

e° = max{¢ I E •7_, Ve• [0,¢*]}= 0.146.

Ezample _. Consider the following interconnected

feedback system shown in Figure C. Let

Figure C. InterconnectedFeedback System.

Qz(a_.._) a + 2
Q(') := Q_(,)- 77 [



Pu(s) _ s2 + s + 1
P;(s) := /'21(8)- _+a2s 2+4s+ao

Pn(a) _ 6.6s 3 + 13.58 z + 15.5s + 20.4
F2(s) .- F2_(s) - sa + _s2 + 3.5s +2.4

and let the set of parameters p = [a2,ao, b2] vary as

follows:

a_ E [a_', a_] with the nominal value 4 = -3.0

ao 6 [ao, a_] with the nominal value 4 = 2.0

b2 6 [b_, b+] with the nominal value b° = 3.5

where [._,,,2+1 = [_,o_ _,_,.,_ + _'-,_l
[%,%+1= [4-_.0_,4+ _.od
[b_,b_+1 = [by-_,_,_ + w_,d

with [w,,,w_,o,wb,]= [i,1,I]. The Kharitonov ver-

tex and segment polynomials as follows:

(s,d= Ki,(.,d=g_.(.,d

= K_. (,, _)= e.(.,_)

= K_x,(s,e ) = K3_,(s,e)

= K_,, (S, _) = P12 (8) 6)

= K_,, (s, ,)

= a_+4s+a+s2+s 3

KL,(,,d : KL, C,,d
= a_ +4s+a_s2 + sa

S_,,(s,e) = g_,,,(s,e)

sL,(_,d = sL,(,,d
= AK_,,,Cs, e)+(1-A)K_,,(s,e)

S_,,(s,e) = K,_,,(s,e)

K_,,(s,e) = K_,,(s,¢)

= 2.4+3.5s+b+s _+s 3

K_,,(s,e) = K_,,,(,,e)

: 2.4+3.5swb_-s 2+s 3

S_,=,(s,e) = K_,,(s,e)

S_p,,(s,e) = S_,,(s,,)

= AK_,,,Cs, e)+(1-A)K_,,(s,e)

S_,,(s,e) = K._,,Cs,,).

K_I 1

K_,,(s,,)

xL,(,,d

The setsofmanifolds to be checked for stabilityare:

S {Q,(,)P,,(,, ,)P,=(,, ,) +
Q,(s)[_,xL,(,, d + (_- _,)X$,,(,,,)]

[A2K,},,,(s,,)+ (I- A2)K_,,(s,,)]}

We now solvethe problem ofchecking thesemanifolds

by overbounding thisset by the convex hull of the

vertices.After eliminatingall duplicatedsegments,

we have the followinglinesegments which need to be

checked. Note that the linesegments listedbelow are

functions of e and our objective is to find the max-

imum value of e so that all E(s,e') remain Hurwits

for alle 6 [0, e*].

E,(s,,) = (Q,(s)Pn(s,e)Pn(s,e) +

Q2(s)K_,,, ( s, ,)K_,, ( s, ¢),

Q,(s)Pn(s, e)Pn(s, e)+

Q, (s)K_,, (s, ,)K_,,, (s, ,))

E2(s,,) -- (Q,(s)Pn(s,,)Pn(s,,) +

Q2 (s)g_,, (s, e)K_,, (s, ,),

Q,(s)Pn(s, e)Pn(s, e) +

Q= (s)g},,, (s, e)g_,,, (s, ,))

E3(s,e) = (Q,(s)Pn(,,_)Pn(s,,) +

Q2(s)K_,,, (s,,)K_,,,(s,'),

Q,(s)Pn(s, ,)Pn(s, ,) +

Q_(,)Kk, C,,,)Kk,(s,,))
E,(s,¢) = (Q,(s)Pn(s,e)Pn(s,e) +

Q=(s)K_,,, ( s, e)K_,,,(s,,),

Q,(s)Pn(s, ,)Pn (s, ¢) +

Q= (s)K_,,, (s, ,)K,_., (s, e))

E,(s,,) = (Q,(s)Pn(s,e)Pn(s,¢) +

Q=( s)K_,, ( s, e)K_,,,( s, e),

Q, (s)PI,(S, e)Pl,(S, e)+

Q2 (s)K_,,, (s, ,)K },,, (s, ,))

E6(s,,) = (Q_(s)Pn(s,e)Pn(s,_) +

Q=(,)x_,,C,,,)x_,,(,,,),
Q,(s)Pn(s, ,)Pn(s, ,)+

Q2 (s)K},,, (s, ,)K1, (s, e)).

Using a simple bisection method based algorithm wc
have

_" = max{elE, (s, e) 6 7"/,Ve 6 [0,e*],i = 1,...,6}

= 0.6305.

4. CONCLUDING REMARKS

A simple technique to determine the parametric sta-

bilitymargin formultilinearlydependent intervalcon-

trol system has been given. The method isbased

on the multilineargeneralizationof the Box theorem.

The method ispowerful and reduces computational

burden significantly.In fact,ifused in conjunction

with the Segment Lemma it completely eliminates

frequency sweeping. Furthermore, by adding addi-

tionalverticesone may achieve an arbitrarilyhigh

levelof accuracy.
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Figure 1: Image Set (_ = 0.85)
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Figure 3: Image Set (w = 0.85)
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Figure 4: Convex Hull (_ = 0.85)


